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Abstract. This paper provides a new construction of Λ-coalescents called “me-
asure division construction”. This construction is pathwise and consists of di-
viding the characteristic measure Λ into several parts and adding them one by
one to have a whole process. Using this construction, a ”universal” normaliza-
tion factor µ(n) for the randomly chosen external branch length T (n) has been
discovered for a class of coalescents. This class of coalescents covers processes
similar to Bolthausen – Sznitman coalescent, the coalescents without proper fre-
quencies, and also others. A conjecture is also made to extend the universality
of µ(n) to more processes.
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1. Introduction

1.1. Motivation and main results

Let N := {1, 2, . . . }, Ω be a subset of N and π a partition of Ω such that
|π| < +∞ (|π| denotes the number of blocks in π). The Λ-coalescent process
starting from π, introduced independently by Pitman [27] and Sagitov [28], is
denoted by Π(π) := (Π(π)(t))t≥0, where Π(π)(0) = π and Λ is a finite measure
on [0, 1]. Here we specify that a finite measure on [0, 1] can be a null measure
and hence its total mass is a non-negative real value. If π = {{1}, {2}, . . . , {n}},
i.e., the set of first n singletons, then the process is simply denoted by Π(n). In
this paper, we will frequently use two other notations Λ1, Λ2 for finite measures.
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We define then Π(1,n) as the Λ1-coalescent and Π(2,n) the Λ2-coalescent, both
taking {{1}, {2}, . . . , {n}} as initial value.

This process Π(π) is a continuous time Markov process with càdlàg trajec-
tories taking values in the set of partitions of Ω. More precisely: Assume that
at time t, Π(π)(t) has b blocks, then after a random exponential time with
parameter gb

gb =
b∑

k=2

(
b

k

)
λb,k, where λb,k =

1∫

0

xk−2(1− x)b−k Λ(dx), (1.1)

Π(π) encounters a collision and the probability for a group of k(2 ≤ k ≤ b)
blocks to be merged into a bigger block with the other b− k blocks unchanged
is

λb,k

gb
.

Then

pb,b−k+1 :=

(
b
k

)
λb,k

gb
(1.2)

is the probability to have b−k+1 blocks right after the collision. This definition
gives the exchangeability of blocks. In particular, for any permutation ρ on

{1, 2, . . . , n}, ρ ◦Π(n) (d)
= Π(n).

Remark that if Λ({0}) = 0, we have the following formula:

gb =

1∫

0

(
1− (1− x)b − bx(1− x)b−1

)
x−2 Λ(dx). (1.3)

The definition shows that the law of Π(π) is determined by the initial value π
and the measure Λ which is hence called characteristic measure.

Notice that Ω can be an abstract set and the coalescing mechanism works
all the same. The reason why one takes Ω as a subset of N relies on its appli-
cations in the genealogies of populations. We take Π(n) as an example where
Ω = {1, 2, . . . , n}. At time 0, we have Π(n)(0) = {{1}, {2}, . . . , {n}} which is
interpreted as a sample of n individuals labelled from 1 to n. If at time t, Π(n)

has its first coalescence where {1} and {2} are merged together with the others
unchanged, then Π(n)(t) = {{1, 2}, {3}, . . . , {n}} which is interpreted as getting
the MRCA (most recent common ancestor) {1, 2} of individuals 1 and 2 with
the others unchanged at that time. Hence {1, 2, . . . , n} is an absorption state
of Π(n) and is the MRCA of all individuals. For more details, we refer to [23,25]
or [1, 6, 15,20].

Let 1 ≤ m ≤ n and σ the restriction from {1, 2, · · · , n} to {1, 2, . . . ,m}. We

have the consistency property: σ ◦ Π(n) (d)
= Π(m) (see [27]). According to this
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property and exchangeability of blocks, if π′ is a subset of π, then the restriction
of Π(π) from π to π′ has the same distribution as that of Π(π′). We can also
define Π(π) when |π| = +∞ by using the consistency property and the definition
in finite cases (see [27]).

Let |Π(n)| be the block counting process associated to Π(n) such that |Π(n)(t)|
is the number of blocks of Π(n)(t) for any t ≥ 0. Then it decreases from n

at time 0. We denote by X
(n)
1 the decrease of number of blocks at the first

coalescence. For i ∈ {1, . . . , n}, we define

T
(n)
i := inf

{
t ≥ 0 | {i} /∈ Π(n)

t

}

the length of the ith external branch and T (n) the length of a randomly chosen

external branch. By exchangeability, T
(n)
i

(d)
= T (n). We denote by L

(n)
ext :=∑n

i=1 T
(n)
i the total external branch length of Π(n), and by L

(n)
total the total

branch length.
The following four classes of Λ-coalescents have been largely studied. We

give the results concerning T (n), which show a common regularity that we will
discuss later.

• Λ = δ0: Kingman coalescent ( [23], [24]). Then nT (n) is asymptotically
distributed with density function (8/(2 + x)3)1{x ≥ 0} ( [4], [8], [21]).

• Λ = Λleb : Bolthausen – Sznitman coalescent ( [5]). Here Λleb denotes
the Lebesgue measure on [0, 1]. Then (ln n)T (n) converges in distribution
to Exp(1) (we denote by Exp(r), r > 0, the exponential variable with
parameter r) [11,17].

•
Λ(dx)

dx
=

xa−1(1− x)b−1

Beta(a, b)
1{0 ≤ x ≤ 1}, 0 < a < 1, b > 0 :

Beta(a, b)-coalescent. Here Beta(·, ·) denotes Euler’s beta function. Then
n1−aT (n) converges in distribution to a random variable T (a, b) which has
density function

Γ(a + b)
(1− a)Γ(b)

(
1 +

Γ(a + b)
(2− a)Γ(b)

x
)−(3−2a)/(1−a)

1{x ≥ 0}

(see [12]).

• ∫ 1

0
x−1 Λ(dx)<+∞: These processes are called coalescents without proper

frequencies ( [27]). One example is Beta(a, b)-coalescents with a > 1, b > 0
(see [27], [29]). Then

( ∫ 1

0
x−1 Λ(dx)

)
T (n) converges in distribution to

Exp(1) ( [19], [26]).
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We see a common property for the last three cases concerning one external
branch length which is that the normalization factor for T (n) is µ(n) :=

∫ 1

1/n
x−1×

Λ(dx). More precisely,

• Bolthausen – Sznitman coalescent: Notice that µ(n) = ln n. Hence directly

we have µ(n)T (n) (d)→ Exp(1).

• Beta(a, b)-coalescent with 0 < a < 1, b > 0:

µ(n) =

1∫

1/n

x−1 Λ(dx) =

1∫

1/n

Γ(a + b)
Γ(a)Γ(b)

xa−2(1− x)b−1 dx

=
Γ(a + b)

(1− a)Γ(a)Γ(b)
n1−a + O(1).

Hence µ(n)T (n) converges in distribution to T (a, b)Γ(a+b)/(1−a)Γ(a)Γ(b).

• If
∫ 1

0
x−1Λ(dx) < +∞, then

lim
n→+∞

µ(n)

∫ 1

0
x−1Λ(dx)

= 1.

Hence µ(n)T (n) converges in distribution to Exp(1).

Kingman coalescent can be viewed as the formal limit of Beta(a, b)-coales-
cent with 0 < a < 1, b > 0 when a tends to 0, since the measure

(
xa−1 ×

(1 − x)b−1 dx/Beta(a, b)
)
1{0 ≤ x ≤ 1} tends weakly to the Dirac measure on

{0}. The normalization factor in the case of Beta(a, b)-coalescent is n1−a, and
of Kingman coalescent is n. Then we see that these two factors show also some
kind of continuity as a tends to 0. We can formally take n as µ(n) in the case
of Kingman coalescent.

Therefore µ(n) is characteristic for the randomly chosen external branch
length in those processes considered. Notice that µ(n) concerns only the mea-
sure Λ1{[1/n, 1]}, so it is natural to think about the influences of measures
Λ1{[1/n, 1]} and Λ1{[0, 1/n)} on the external branch lengths. More generally,
if Λ = Λ1 + Λ2, how can we evaluate each influence on the construction of the
whole Λ-coalescent? If Λ1 is “small” enough, we can imagine that Π(n) looks
like Π(2,n) (recall that Π(2,n) is the Λ2-coalescent). In this case, we call Λ1 the
noise measure and Λ2 the main measure. To separate Λ1 and Λ2, we introduce
in the next section the “measure division construction” of a Λ-coalescent. The
idea of this construction can be at least tracked back to [2] where the authors
consider also a coupling of two finite measures on [0, 1]. The difference relies on
the block labelling.

The main results are as follows:
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Theorem 1.1. If Λ satisfies:

lim
n→+∞

gn

nµ(n)
= 0, (1.4)

then µ(n)T (n) (d)→ Exp(1).

Remark 1.1.

• Condition (1.4) implies that Λ({0}) = 0. Indeed, if Λ({0}) > 0, then
gn ≥

(
n
2

)
Λ({0}) and µ(n) ≤ nΛ((0, 1]). Then (1.4) is invalid.

• The class of coalescents satisfying condition (1.4) does not contain the
Beta(a, b)-coalescents with 0 < a < 1 and b > 0. The following conjecture
uses a description similar to condition (1.4) to include them:

Conjecture 1.1. Let c > 0. If

lim
n→+∞

gn

nµ(n)
= c,

then µ(n)T (n) (d)→ Tc, where Tc is a random variable with density Γ(2 −
α∗)(1 + cx)−α∗/(α∗−1)−11{x ≥ 0}. Here α∗ is the unique solution of the
equation

(α− 1)Γ(2− α)
α

= c.

This conjecture is true for Beta(a, b)-coalescents with 0 < a < 1, b > 0.
In this case, we have c = (1− a)Γ(a)/(2− a). The coalescents, which are
more general than but similar to Beta(a, b)-coalescents with 0 < a < 1,
b > 0, studied in [12] also satisfy this conjecture.

Examples: We give a short list of typical examples satisfying condition (1.4)
which are processes without proper frequencies or similar to Bolthausen – Szit-
man coalescent. Define µ̄(n) :=

∫ 1

1/n
x−2 Λ(dx).

Example 1.1.
∫ 1

0
x−1 Λ(dx)<+∞: It suffices to prove that limn→+∞ gn/n=0.

Recalling the expression (1.3) of gn, we have, for n ≥ 2,

gn

n
=

∫ 1

0

(
1− (1− x)n − nx(1− x)n−1

)
x−2 Λ(dx)

n

=

∫ 1

1/n

(
1− (1− x)n − nx(1− x)n−1

)
x−2 Λ(dx)

n

+

∫ 1/n

0

(
1− (1− x)n − nx(1− x)n−1

)
x−2 Λ(dx)

n

≤ µ̄(n)

n
+

∫ 1/n

0
n2 Λ(dx)
n

. (1.5)
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The second term

∫ 1/n

0
n2 Λ(dx)
n

=

1/n∫

0

n Λ(dx) ≤
1/n∫

0

x−1 Λ(dx) −→ 0.

For the first term, let ε > 0 and M = 1/ε , then

µ̄(n)

n
=

∫ 1

M/n
x−2 Λ(dx)

n
+

∫ M/n

1/n
x−2 Λ(dx)

n

≤
∫ 1

M/n
x−1 Λ(dx)

M
+

M/n∫

1/n

x−1 Λ(dx) ≤ ε

1∫

0

x−1 Λ(dx) +

M/n∫

1/n

x−1 Λ(dx).

Notice that ε
∫ 1

0
x−1 Λ(dx) can be arbitrarily small and

∫ M/n

1/n
x−1 Λ(dx) tends

to 0 as n tends to +∞. Then we get that µ̄(n)/n tends to 0. Hence if∫ 1

0
x−1 Λ(dx) < +∞, condition (1.4) is satisfied.

Example 1.2. Bolthausen – Sznitman coalescent: In this case, it is straightfor-
ward to prove that gn = n − 1 and µ(n) = ln n, then limn→+∞ gn/(nµ(n)) =
limn→+∞(n− 1)/(n ln n) = 0.

Example 1.3. Λ has a density function fΛ on [0, r) where 0 < r < 1 and there
exists a positive number M such that fΛ < M on [0, r): This kind of processes
can be considered as being dominated by the Bolthausen – Sznitman coalescent.

If
∫ 1

0
x−1 Λ(dx) < +∞, we turn back to the first example. If

∫ 1

0
x−1 Λ(dx) =

+∞, then we have gn ≤ 2M(n− 1) for n large enough, hence

lim sup
n→+∞

gn

nµ(n)
≤ lim

n→+∞
2M(n− 1)

nµ(n)
= 0.

It turns out that this kind of coalescent also satisfies condition (1.4).

Example 1.4. Λ has a density function fΛ(x) = p(lnx−1)q on [0, r) where
0 < r < 1 and p, q are positive numbers: Using (1.5), we have

gn

nµ(n)
≤ µ̄(n)

nµ(n)
+

∫ 1/n

0
n2 Λ(dx)

nµ(n)
, ∀n ≥ 2.

For two real sequences (xn)n≥1, (yn)n≥1, we write xn ³ yn, if there exist two
positive constants c, C such that cyn ≤ xn ≤ Cyn for n large enough. Then it is
not difficult to find out that µ(n) ³ (ln n)q+1, µ̄(n) ³ n(lnn)q,

∫ 1/n

0
n2 Λ(dx) ³

n(lnn)q. Hence we get gn/(nµ(n)) → 0.
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Theorem 1.2. If Λ satisfies condition (1.4) and
∫ 1

0
x−1 Λ(dx) = +∞, then we

have:

µ(n)
(
T

(n)
1 , T

(n)
2 , . . . , T (n)

n , 0, 0, . . .
) (d)−→ (e1, e2, . . .), (1.6)

where (ei)i∈N are independently distributed as Exp(1).

Remark 1.2. The same result has been proved for Bolthausen – Sznitman co-
alescent in [11]. The authors have used a moment method. We can apply
this theorem to Example 1.4 and Example 1.3 when

∫ 1

0
x−1 Λ(dx) = +∞. If∫ 1

0
x−1 Λ(dx) < +∞, then (1.6) is not true and there is no more asymptotic

independence (see [26]).

The following three corollaries have also been proved for Bolthausen – Sznit-
man coalescent (see [11,14,18]).

Corollary 1.1. If Λ satisfies condition (1.4), then for any r ∈ R+,

lim
n→+∞

E
[
(µ(n)T (n))r

]
= E

[
er
1

]
,

where e1 is distributed as Exp(1). Moreover, if
∫ 1

0
x−1 Λ(dx) = +∞, then for

any k ∈ N and any (r1, r2, . . . , rk) ∈ {R+}k, we have:

lim
n→+∞

E
[ k∏

i=1

(µ(n)T
(n)
i )ri

]
= E

[ k∏

i=1

eri
i

]
, (1.7)

where (ei)1≤i≤k are independently distributed as Exp(1).

Corollary 1.2. If Λ satisfies condition (1.4) and
∫ 1

0
x−1 Λ(dx) = +∞, then the

total external branch length L
(n)
ext satisfies: µ(n)L

(n)
ext/n converges in L2 to 1.

Corollary 1.3. If Λ satisfies condition (1.4) and
∫ 1

0
x−1 Λ(dx) = +∞, then the

total branch length L
(n)
total satisfies: µ(n)L

(n)
total/n converges in probability to 1.

Remark 1.3.

• In fact, we will prove that limn→+∞ E
[
µ(n)L

(n)
total/n

]
= 1. Notice that

Corollary 1.1 gives limn→+∞ E
[
µ(n)L

(n)
ext/n] = 1. Hence we deduce this

corollary using Corollary 1.2.

• If
∫ 1

0
x−1 Λ(dx) < +∞, then (1.7) and Corollaries 1.2 and 1.3 are not true

(see again [26]).
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1.2. Organization

In Section 2, we introduce the main object of this paper: the measure division
construction. At first, one needs to define the restriction by the smallest element
which serves as a preliminary step of measure division construction. In the same
section, we then introduce the two-type Λ-coalescent which is defined using the
measure division construction. This process gives a label primary or secondary
to every block and its every element of a normal Λ-coalescent. Using this process,
we can see more clearly the coalescent times of some singletons. For a technical
use, we then give a tripling to estimate the number of blocks at small times
of Π(1,n) which is related to the noise measure Λ1.

In Section 3, we at first give a characterization of the condition (1.4). Then
we apply the general results obtained in Section 2 to those processes satisfy-
ing (1.4). Finally, we give all the proofs for the results presented in the Sec-
tion 1.

2. Measure division construction

2.1. Restriction by the smallest element

Let ξn = {A1, . . . , A|ξn|}, χn = {B1, . . . , B|χn|} be two partitions of {1, 2,
. . . , n}. We define sA

i (resp. sB
i ) as the smallest number in the block Ai (resp.

Bi). We define also the notation ξn ¹ χn, if |χn| ≤ |ξn| and for any 1 ≤ i ≤ |χn|,
Bi = ∪j∈IiAj , where {Ii}1≤i≤|χn| is a partition of {1, 2, . . . , |ξn|}. Roughly
speaking, ξn is finer than χn.

If ξn ¹ χn, we define the stochastic process Π̄(χn) which is the restriction by
the smallest element of Π(ξn) from ξn to χn:

• Π̄(χn)(0) = χn;

• For any t ≥ 0, if Π(ξn)(t) = {Di}1≤i≤|Π(ξn)(t)|, where Di denotes a block,
then

Π̄(χn)(t) =
{ ⋃

sB
j ∈Di

Bj

}

1≤i≤|Π(ξn)(t)|
,

where the empty sets in Π̄(χn)(t) are removed.

Notice that the restriction by the smallest element is defined from path to path
(see Figure 1).

Lemma 2.1. Π̄(χn) has the same distribution as Π(χn).

Proof. Every block in χn is identified by its smallest element which belongs
to a unique block in ξn. Hence for any Bi in χn, there exists a unique Aτi

such that Aτi ∈ ξn, Aτi ⊂ Bi and sA
τi

= sB
i with τi ∈ {1, 2, . . . , |ξn|}. Let

χ′n = {Aτi}1≤i≤|χn| and define a new process Π̂(χ′n) as follows:
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(a) Π(5) (b) A restriction by the smallest el-
ement of Π(5) from {{1}, . . . , {5}} to
{{1, 2}, {3, 5}, {4}}

Figure 1. Restriction by the smallest element

• Π̂(χ′n)(0) = χ′n.

• For any t ≥ 0, if Π(ξn)(t) = {Di}1≤i≤|Π(ξn)(t)|, then

Π̂(χ′n)(t) =
{ ⋃

sA
τj
∈Di

Aτj

}

1≤i≤|Π(ξn)(t)|
,

where the empty sets in Π̂(χ′n)(t) are removed.

It is easy to see that Π̂(χ′n) is a natural restriction of Π(ξn) from ξn to χ′n. By

the consistency property, one gets Π̂(χ′n) (d)
= Π(χ′n). In the construction of Π̂(χ′n)

and Π̄(χn), what is determinant is the smallest element in each block. Hence to
obtain Π̄(χn) from Π̂(χ′n), at time 0, one needs to complete every Aτi by some
other numbers larger than sA

τi
to get Bi and then follow the evolution of Π̂(χ′n).

It turns out that Π̄(χn) is a coalescent process with initial value χn. Hence we
can conclude. 2

2.2. Measure division construction

Let Λ, Λ1, Λ2 be three finite measures such that Λ = Λ1 + Λ2. We denote
by Π(n)

1,2 := (Π(n)
1,2 (t))t≥0 the stochastic process constructed by the measure di-

vision construction using Λ1 and Λ2. Here the index (1, 2) is for Λ = Λ1 + Λ2

with Λ1 called noise measure and Λ2 main measure. Recall that Π(1,n) is the
Λ1-coalescent with Π(1,n)(0) = {{1}, {2}, . . . , {n}}.

• Step 0: Given a realization or a path Π of Π(1,n), we set Π(n)
1,2 (t) = Π(t),

for any t ≥ 0. We set also t0 = 0.
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• Step 1: Let t1, t2, . . . be the coalescent times after t0 of Π(n)
1,2 (if there

is no collision after t0, we set ti = +∞, i ≥ 1). Within [t0, t1), Π(n)
1,2 is

constant. Then we run an independent Λ2-coalescent with initial value
Π(n)

1,2 (t0) from time t0.

– If the Λ2-coalescent has no collision on [t0, t1), we pass to [t1, t2).
Similarly, we construct another independent Λ2-coalescent with ini-
tial value Π(n)

1,2 (t1) from time t1, and so on.
– Otherwise, we go to the next step.

• Step 2: If finally within [ti−1, ti), the related independent Λ2-coalescent
has its first collision at time t∗ and its value at t∗ is ξ. We then modify
(Π(n)

1,2 (t))t≥0 in the following way:

– We change nothing for 0 ≤ t < t∗.
– Let Π′ = (Π′(t), t ≥ t∗) be the restriction by the smallest element of

(Π(n)
1,2 (t))t≥t∗ from Π(n)

1,2 (t∗) to ξ. Then let (Π(n)
1,2 (t))t≥t∗ = (Π′(t))t≥t∗

and go to the step 1 by taking t∗ as a new starting point. Notice
that, due to Lemma 2.1, (Π(n)

1,2 (t))t≥t∗ has the same distribution as a
Λ1-coalescent from time t∗ with initial value ξ.

Remark 2.1.

• The measure division construction works path by path.

• If we take Λ1 = 0 as noise measure and Λ2 = Λ as main measure, then

Π(1,n)(t) = {{1}, {2}, . . . , {n}} for any t ≥ 0 and Π(n)
1,2

(d)
= Π(n).

Theorem 2.1. Let Λ, Λ1 and Λ2 be three finite measures and Λ = Λ1 + Λ2.

Then we have Π(n)
1,2

(d)
= Π(n).

Proof. Let t be a coalescent time of Π(n)
1,2 . We consider the time of the next

coalescence and the value at that moment. In the measure division construction
of Π(n)

1,2 , we can see appearing two independent processes with one being a Λ1-

coalescent with initial value Π(n)
1,2 (t) and the other one being a Λ2-coalescent

with initial value Π(n)
1,2 (t) from time t. The process Π(n)

1,2 gets the next coalescence
whenever one of them first encounters a coalescence and picks up the value of
the process at that moment. Then we follow the same procedure from the new
coalescent time of Π(n)

1,2 . It is easy to see that Π(n)
1,2 behaves in the same way

as Π(n). Hence we can conclude. 2

Remark 2.2. The theorem shows that if we exchange the noise measure and the
main measure, the distribution of the process is not changed and is uniquely
determined by their sum.



On the measure division construction of Λ-coalescents 239

Remark 2.3. The measure division construction also works for more than two
measures. If there are k(k ≥ 2) finite measures {Λi}1≤i≤k and Λ =

∑k
i=1 Λi, one

can get a stochastic process by first giving a realization of Π(1,n) which will be
modified by Λ2 in the way described in the measure division construction, and
then we apply Λ3 on the modified process, etc. The equivalence in distribution
can be obtained in a recursive way.

We give a corollary to show an immediate application of the measure division
construction. The following corollary is essentially the same as Lemma 3.2 in [2].
But we prove it again in our way.

Corollary 2.1. Let Λ1, Λ2 be two finite measures such that Λ1 ≤ Λ2, then one
can construct Π(1,n) and Π(2,n) such that |Π(2,n)(t)| ≤ |Π(1,n)(t)| for all t ≥ 0.

Proof. Π(2,n) can be regarded as the measure constructed process by imposing
the measure Λ2−Λ1 on the paths of Π(1,n). Then we can deduce this corollary.

2

2.3. Two-type Λ-coalescents

2.3.1. Definitions

Let Λ, Λ1, Λ2 be three finite measures and Λ = Λ1 + Λ2 and Λ2 satisfies∫ 1

0
x−2 Λ2(dx) < +∞. A two-type Λ-coalescent, denoted by Π̃(n)

1,2 , is to give a la-
bel primary or secondary to every block and also to its every element at any time
t of a normal Λ-coalescent. A block is secondary if and only if every element in
this block is secondary. The construction is via the measure division construc-
tion. Let (η(2)

i )i≥1 be independent random variables following the distribution
of

( ∫ 1

0
x−2 Λ2(dx)

)−1
x−2 Λ2(dx), (e(2)

i )i≥1 i.i.d. copies of Exp(
∫ 1

0
x−2 Λ2(dx))

and (S(2)
i )i≥1 =

( ∑i
j=1 e

(2)
j

)
i≥1

.

Construction of a two-type Λ-coalescent:

• Step 0: We pick a realization or a path Π of Π(1,n). Every element and
every block of Π at any time is labeled primary. We also fix independent
realizations of (η(2)

i )i≥1 and (S(2)
i )i≥1. Let Π̃(n)

1,2 be the path Π with labels.

• Step 1: At time S
(2)
1 , every block of Π̃(n)

1,2 (S(2)
1 ) is independently marked

“Head” with probability η
(2)
1 and “Tail” with probability 1− η

(2)
1 . Every

element in a “Head” block is then labeled secondary. All blocks marked
“Head” are merged into a bigger block, provided that there are at least
two “Head”s. In this case, we use the restriction by the smallest element
to modify Π̃(n)

1,2 at time S
(2)
1 in the same way as in the measure division

construction in Section 2.2. We still call the modified path Π̃(n)
1,2 and then
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forward to the time S
(2)
2 and do the same operations. This procedure can

be continued until MRCA.

It is easy to verify that without labels, Π̃(n)
1,2 has the same distribution as Π(n).

We call (S(2)
i )i≥1 the marking times. We define L

(2,n)
i as the first marking time

of {i} when {i} is marked “Head” for the first time. Let L
(2,n)
i = +∞, if {i} is

never marked as “Head”.

Remark 2.4. If Π = {{1}, . . . , {n}}, then we get a coupling between Λ2-coales-
cent and its related annihilator process (see [14]). In this case, the whole process
without labels is the Λ2-coalescent and the restriction to primary elements and
blocks is the annihilator process.

2.3.2. Coalescent times and first marking times

The above construction of two-type coalescents shows that coalescences hap-
pen only at the marking times. This property will help us to understand the
coalescent times of singletons in terms of their first marking times.

Lemma 2.2. Let Π be the path of Π(1,n) chosen at the Step 0 of the construc-
tion of two-type Λ coalescent. Assume that at some time t > 0, {1} ∈ Π(t),
|Π(t)| = m with 2 ≤ m ≤ n. Let P

(n,m)
1,2 (t) be the probability for {1} to be

coalesced at its first marking time within [0, t). Then we have

P
(n,m)
1,2 (t) ≥ P

(2,m)
t :=

+∞∑

i=1

E
[
1{S(2)

i < t}∆(2)
i

(
1− (1−∆(2)

i )m−1
)]

, (2.1)

where ∆(2)
1 = η

(2)
1 ; ∆(2)

i = η
(2)
i

∏i−1
j=1(1 − η

(2)
j ) for i > 1. Notice that the

parameter n is hidden in P
(2,m)
t .

Proof. Let i1, . . . , im be the m smallest elements respectively in each block at
time t with 1 = i1 ≤ i2 ≤ · · · ≤ im ≤ n.

Conditional on (S(2)
i , η

(2)
i )i≥1, ∆(2)

i is the probability for {1} to have its first
marking time at S

(2)
i (assume that S

(2)
i ≤ t). To let {1} be coalesced at S

(2)
i ,

one needs also at least one other block marked “Head” at that time. To get a
lower bound of P

(n,m)
1,2 (t), one can consider the probability to have at least one

primary block containing one element of {i2, · · · , im} to be marked “Head” at
that time and this probability is 1− (1−∆(2)

i )m−1. 2

Lemma 2.3. In addition to the assumptions in the previous lemma, we assume
further that for every fixed k such that 1 ≤ k ≤ m, {i} ∈ Π(t) for 1 ≤ i ≤ k.
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Define the probability P
(n,m,k)
1,2 (t) for every {i} to be coalesced at its first mar-

king time within [0, t). Then we have

P
(n,m,k)
1,2 (t) ≥ 1− k

(
1− P

(2,m)
t

)
. (2.2)

Proof. Let E =
{∀1 ≤ i ≤ k, {i} ∈ Π(t); |Π(t)| = m

}
, which denotes the

assumptions of Π(t) in this Lemma. Then

P
(n,m,k)
1,2 (t)

= P
({1}, . . . , {k} coalesce at their first marking times within [0, t) | E)

= 1− P(one of {{1}, . . . , {k}} does not coalesce

at its first marking times within [0, t) | E)

≥ 1−
k∑

i=1

P
({i} does not coalesce at its first marking time within [0, t) | E)

= 1− k
(
1− P({1} coalesces at its first marking time within [0, t) | E))

≥ 1− k
(
1− P

(2,m)
t

)
.

The last inequality is due to the fact that

P
({1} coalesces at its first marking time within [0, t) | E) ≥ P

(2,m)
t ,

which is true due to the same arguments used in the proof of the last lemma.
2

If m, t are large enough such that under some assumptions, we could prove
that P

(2,m)
t is very close to 1. Then the coalescent times are almost the first

marking times which are easier to deal with. In Section 3.3, we will see such
a situation for Λ satisfying condition (1.4) and Λ1 = Λ1{[0, 1/n)}, Λ2 =
Λ1{[1/n, 1]}. The following corollary studies the first marking times in this
particular case.

Corollary 2.2. Let t > 0 and 1 ≤ k ≤ n. Assume that Λ satisfies condi-
tion (1.4) and Λ1 = Λ1{[0, 1/n)}, Λ2 = Λ1{[1/n, 1]}. Let Π be a path of Π(1,n).

Recall that L
(2,n)
i is the first marking time of {i} for 1 ≤ i ≤ n.

• If {1} ∈ Π(t/µ(n)), then for any 0 ≤ t1 ≤ t, P
(
L

(2,n)
1 ≥ (t1/µ(n)) | Π

)
=

exp{−t}.
• Fix k such that 1 ≤ k ≤ n. Assume

∫ 1

0
x−1 Λ(dx) = +∞ and {i} ∈

Π(t/µ(n)) for any 1 ≤ i ≤ k. Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t, we then have

lim
n→+∞

P
(
L

(2,n)
i ≥ ti

µ(n)
, ∀1 ≤ i ≤ k

∣∣∣ Π
)

= exp
{
−

k∑

i=1

ti

}
. (2.3)
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Proof. The first case is easy to see, due to the definition of L
(2,n)
1 . For the

second case, we only consider k = 2. For k > 2, the proof is similar. Assume
that within [0, t1/µ(n)], there are N1 marking times and for (t1/µ(n), t2/µ(n)],
there are N2 marking times. N1 and N2 are independently Poisson distributed
with parameters respectively µ̄(n)t1/µ(n) and µ̄(n)(t2 − t1)/µ(n) (here we have
µ̄(n) =

∫ 1

1/n
x−2 Λ(dx) =

∫ 1

1/n
x−2 Λ2(dx)). Then we get

P
(
L

(2,n)
1 ≥ t1

µ(n)
, L

(2,n)
2 ≥ t2

µ(n)

∣∣∣ Π
)

= E
[
ΠN1

i=1(1− η
(2)
i )2ΠN1+N2

i=N1+1(1− η
(2)
i )

]

= E
[(

1− 2E
[
η
(2)
1

]
+ E

[(
η
(2)
1

)2])N1
]
E

[(
1− E[

η
(2)
1

])N2
]

= exp
( µ̄(n)t1

µ(n)

(− 2E
[
η
(2)
1

]
+ E

[(
η
(2)
1

)2])) exp
( µ̄(n)(t2 − t1)

µ(n)

(− E[
η
(2)
1

]))
,

where the last equality is due to the probability generating function of Poisson
distribution. Recall that E

[
η
(2)
1

]
= µ(n)/µ̄(n) and E

[(
η
(2)
1

)2] = (µ̄(n))−1 ×∫ 1

1/n
Λ(dx). Therefore,

µ̄(n)

µ(n)
E

[
η
(2)
1

]
=

∫ 1

1/n
x−1 Λ(dx)

µ(n)
= 1, and

µ̄(n)

µ(n)
E

[
(η(2)

1 )2
]

=

∫ 1

1/n
Λ(dx)

µ(n)
−→ 0.

Then we can conclude (2.3). 2

2.4. A tripling

We often have some results on the coalescent related to a special measure,
for example, the Beta-coalescent. When the process is perturbed by a noise
measure, we would wonder whether this damage is negligible. One example is
to estimate the number of blocks of the coalescent related to the noise measure.
To this aim, we use a tool of tripling.

Tripling: Notice that Π(n) encounters its first collision after time e
(n)
1 , which

is a random variable. At this collision, the number of blocks is reduced to
n − W

(n)
1 , where W

(n)
1 is a positive integer valued random variable. Then

we add W
(n)
1 new blocks (these blocks can contain any number belonging to

{n + 1, n + 2, . . . }) and consider the whole new n ones. By the consistency
property, the evolution of the original n −W

(n)
1 blocks can be embedded into

that of the new n blocks, i.e. after time e
(n)
2 , we have the collision in the new

n blocks whose total number is reduced to n −W
(n)
2 and we can calculate the

distribution of the number of blocks coalesced among the original n−W
(n)
1 blocks

(we call any block containing at least one of {1, 2, . . . , n} as “original block” and
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it is very possible that nothing happens for the n−W
(n)
1 blocks). Then we add

again new blocks containing different elements to have another n ones. This
procedure is stopped when every element of {1, 2, . . . , n} is contained in one
block. By the definition of Λ-coalescent, (e(n)

i )i≥1 are independent exponential
random variables with parameter gn and (W (n)

i )i≥1 are i.i.d. copies of X
(n)
1 .

The above procedure gives a tripling of (e(n)
i )i≥1, (W (n)

i )i≥1 and Π(n). We
define V

(n)
i :=

∑i
j=1 e

(n)
j , i ∈ N. Then we have the following:

Proposition 2.1. Suppose that (e(n)
i )i≥1, (W (n)

i )i≥1 and Π(n) are tripled, then
at any time t ≥ 0, we have

n−
N(Λ,n,t)∑

i=0

W
(n)
i ≤ ∣∣Π(n)(t)

∣∣, (2.4)

where N(Λ, n, t) := card {i | V
(n)
i ≤ t}, which is Poisson distributed with

parameter gnt and independent of (W (n)
i )i≥1. Meanwhile,

E
[
W

(n)
i

]
=

n
∫ 1

0
(1− (1− x)n−1)x−1 Λ(dx)

gn
− 1, (2.5)

E
[
(W (n)

i )2
]

=
n(n− 1)

∫ 1

0
Λ(dx)

gn
− E[

W
(n)
i

]
.

Proof. The number of is within [0, t] follows the Poisson distribution with pa-
rameter gnt. Due to the tripling, at any time V

(n)
i with 0 ≤ V

(n)
i ≤ t, the de-

crease of number of blocks
(
i.e.

∣∣Π(n)(V (n)
i −)

∣∣−
∣∣Π(n)(V (n)

i )
∣∣) of original blocks

is less than or equal to W
(n)
i . Hence we get (2.4). Notice that W

(n)
i

(d)
= X

(n)
1 ,

then (2.5) is a consequence of two equalities in [9] with eq. (17) for the first one
and p. 1007 for the second one. 2

3. Applications to coalescents satisfying condition (1.4)

3.1. Characterization of condition (1.4)

Some notations for this section: Let Λ be a finite measure on [0, 1] and
Λ1 = Λ1{[0, 1/n)}, Λ2 = Λ1{[1/n, 1]};

µ(1/y) =

1∫

y

x−1 Λ(dx),

g1/y =

1∫

0

(
1− (1− x)1/y − 1

y
x(1− x)1/y−1

)
x−2 Λ(dx)
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with 0 < y ≤ 1. Notice that the definitions of µ(1/y) and g1/y are consistent
with that of µ(n) and gn when Λ({0}) = 0. For any real number x, let bxc =
max{y; y ∈ Z, y ≤ x} and dxe = min{y; y ∈ Z, y ≥ x}.

Here we are going to prove Theorem 1.1, Theorem 1.2, Corollary 1.1, Corol-
lary 1.2 and Corollary 1.3. Under condition (1.4), we decompose Λ into Λ2

and Λ1. The idea is to construct Π(n) using measure division construction with
noise measure Λ1 and main measure Λ2. At first, we need to show more details
implied by condition (1.4).

Proposition 3.1. The following two assertions are equivalent:

(∗) Λ satisfies condition (1.4);

(∗∗) Λ({0}) = 0 and there exists a càglàd (limit from right, continuous from
left) function f : [0, 1] → [0, 1], continuous at 0 with f(0) = 0 such that∫ 1

0
µ(1/x) dx < +∞ and

µ(1/y) =
( 1∫

0

µ(1/x) dx

)
exp

( 1∫

y

f(t)
t

dt

)
(1− f(y)), 0 < y ≤ 1. (3.1)

Proof. Part 1: We first assume that (∗) is true. If Λ satisfies (1.4), then
Λ({0}) = 0 due to Remark 1.1. For µ(n) 6= 0, we have

gn

nµ(n)
=

∫ 1

0
(1− (1− x)n − nx(1− x)n−1)x−2 Λ(dx)

nµ(n)
= I

(n)
1 + I

(n)
2 ,

where

I
(n)
1 =

∫ 1

1/n
(1− (1− x)n − nx(1− x)n−1)x−2 Λ(dx)

nµ(n)
,

I
(n)
2 =

∫ 1/n

0
(1− (1− x)n − nx(1− x)n−1)x−2 Λ(dx)

nµ(n)
.

Notice that for n large, using monotone property, we have

e− 2
2e

∫ 1

1/n
x−2 Λ(dx)

nµ(n)
≤ I

(n)
1 ≤

∫ 1

1/n
x−2 Λ(dx)

nµ(n)

and

1
3

n
∫ 1/n

0
Λ(dx)

µ(n)
≤ I

(n)
2 ≤ n

∫ 1/n

0
Λ(dx)

µ(n)
.
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Hence condition (1.4) is equivalent to

lim
n→+∞

∫ 1

1/n
x−2 Λ(dx)

nµ(n)
= 0, and lim

n→+∞
n

∫ 1/n

0
Λ(dx)

µ(n)
= 0, Λ({0}) = 0.

(3.2)
Then we deduce that

lim
y→0+

∫ y

0
Λ(dx)

yµ(1/y)
= 0, Λ({0}) = 0. (3.3)

Indeed, for 1/y > 2 and µ(b1/yc) 6= 0, we have
∫ y

0
Λ(dx)

yµ(1/y)
=

∫ y

0
Λ(dx)

y
∫ 1

y
x−1 Λ(dx)

≤
∫ 1/b1/yc
0

Λ(dx)

d1/ye−1 ∫ 1

1/b1/yc x−1 Λ(dx)

=
d1/ye
b1/yc

b1/yc ∫ 1/b1/yc
0

Λ(dx)∫ 1

1/b1/yc x−1 Λ(dx)
y→0+−→ 0.

One thing to notice is that limy→0+ yµ(1/y) = 0 is true for any finite Λ. In fact,
for any positive number M and yM < 1, we have

yµ(1/y) = y

1∫

y

x−1 Λ(dx) = y

1∫

yM

x−1 Λ(dx) + y

yM∫

y

x−1 Λ(dx)

≤
∫ 1

0
Λ(dx)
M

+

yM∫

y

Λ(dx),

where both terms can be made as small as we want by taking M large enough
and y close enough to 0. Looking into details of (yµ(1/y))−1

∫ y

0
Λ(dx) when

µ(1/y) 6= 0, we have the following equality, using integration by parts and
limy→0+ yµ(1/y) = 0,

∫ y

0
Λ(dx)

yµ(1/y)
=

∫ y

0
xx−1 Λ(dx)
yµ(1/y)

=

∫ y

0
µ(1/x) dx− yµ(1/y+)

yµ(1/y)
, (3.4)

where µ(1/y+) = µ(1/y) − y−1Λ({y}). Due to (3.3), we get that

1 ≥ µ(1/y+)

µ(1/y)
= 1− Λ({y})

yµ(1/y)
≥ 1−

∫ y

0
Λ(dx)

yµ(1/y)
−→ 1.

Therefore, (3.3) and (3.4) give

lim
y→0+

yµ(1/y)

∫ y

0
µ(1/x) dx

= 1.
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Notice that
∫ y

0
µ(1/x) dx ≥ yµ(1/y) and µ(1/y) is a càglàd function. Hence there

exists a càglàd function f : [0, 1] → [0, 1], continuous at 0 with f(0) = 0 such
that

yµ(1/y)

∫ y

0
µ(1/x) dx

= 1− f(y). (3.5)

Now let G(t) =
∫ t

0
µ(1/x) dx and any derivative is considered as left derivative.

Then (3.5) becomes

(lnG(t))′ =
G(t)′

G(t)
=

1− f(t)
t

.

Using the fundamental theorem of Newton and Leibniz which also works for
càglàd functions whose primitive functions take left derivatives, one gets that
for 0 < y ≤ 1,

ln G(1)− ln G(y) =

1∫

y

(ln G(t))′ dt =

1∫

y

1− f(t)
t

dt.

Therefore,

G(y) = G(1) exp
(
−

1∫

y

1− f(t)
t

dt

)
.

By taking the left derivatives on the both sides and noticing that G(1) =∫ 1

0
µ(1/x) dx, one can conclude.

Part 2: We now assume that (∗∗) is true. In the first part, we proved implic-
itly that (3.3) is equivalent to the (∗∗). Hence we will use (3.3) to prove (3.2)
which is equivalent to condition (1.4) and only the first convergence in (3.2) is
needed to be proved. Let M be a positive number and M/n ≤ 1, µ(n) 6= 0, then

∫ 1

1/n
x−2 Λ(dx)

nµ(n)
=

∫ 1

M/n
x−2 Λ(dx)

nµ(n)
+

∫ M/n

1/n
x−2 Λ(dx)

nµ(n)

≤ 1
M

+ 1− µ(n/M)

µ(n)
.

The first term can be made as small as we want by taking M large, and the
third term

µ(n/M)

µ(n)
= exp

(
−

M/n∫

1/n

f(x)
x

ds

)
1− f(M/n)
1− f(1/n)

.

Let ε > 0 and n large enough such that f(x) ≤ ε on [0,M/n]. Then µ(n/M) ×
(µ(n))−1 ≥ exp(−ε ln M)(1 − ε), which can be made as close as possible to 1
with ε small enough. Hence we can conclude. 2
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The next corollary is immediate.

Corollary 3.1. If Λ satisfies (1.4), then

• lim
n→+∞

(µ(n))k

n
= 0, ∀k > 0;

• lim
n→+∞

µ(n)

µ(n−M)
= 1, ∀M > 0;

• lim
n→+∞

µ(n)

µ(nε)
= 1, ∀0 < ε < 1.

3.2. Properties of Π(1,n)

We should next estimate the coalescent process related to the noise mea-
sure Λ1 which serves as a perturbation to the main measure Λ2. At first, one
needs a technical result.

Lemma 3.1. We assume that Λ({0}) = 0. Let g
(1)
n =

∫ 1

0
(1− (1−x)n−nx(1−

x)n−1)x−2 Λ1(dx) in the spirit of (1.3). Then there exists a positive constant
C1 such that for n large enough

g(1)
n ≥ C1n

2

1/n∫

0

Λ1(dx). (3.6)

Proof. Let M > 2. We write

g(1)
n =

1∫

0

(
1− (1− x)n − nx(1− x)n−1

)
x−2 Λ1(dx)

=

1/n∫

0

(
1− (1− x)n − nx(1− x)n−1

)
x−2 Λ1(dx) = I1 + I2,

where I1 =
∫ 1/(nM)

0

(
1−(1−x)n−nx(1−x)n−1

)
x−2 Λ1(dx) and I2 =

∫ 1/n

1/(nM)

(
1−

(1− x)n − nx(1− x)n−1
)
x−2 Λ1(dx). It is easy to see that for n ≥ 2,

I1 ≥
1/(nM)∫

0

(
n(n− 1)− n(n− 1)(n− 2)x

)1
2

Λ1(dx)

≥
1/(nM)∫

0

n(n− 1)− (n− 1)(n− 2)
M

1
2

Λ1(dx) ≥ 1
4

1/(nM)∫

0

n2 Λ1(dx).
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For the second term,

I2 ≥
1/n∫

1/(nM)

(
1−

(
1− 1

nM

)n

− (1− 1/(nM))n−1

M

)
n2 Λ1(dx).

Notice that for n large, there exists a positive constant C(M) such that

1−
(
1− 1

nM

)n

− (1− 1/(nM))n−1

M
≥ C(M) > 0.

Hence I2 ≥ C(M)
∫ 1/n

1/(nM)
n2 Λ1(dx). It suffices to take C1 = min{1/4, C(M)}

to conclude. 2

The following lemma estimates the coalescent process related to the noise
measure Λ1. Recall that Π(1,n) is the Λ1-coalescent process with Π(1,n)(0) =
{{1}, {2}, . . . , {n}}.

Lemma 3.2. Assume that Λ satisfy (1.4). Then for any M > 0, 0 < ε ≤ 1
and n large enough, we have

P
(∣∣∣Π(1,n)

( M

µ(n)

)∣∣∣ ≤ n− nε
)

= o(n−1). (3.7)

Proof. If
∫ 1/n0

0
Λ(dx) = 0 with some n0 > 1, then for any n > n0, Λ1 is the null

measure and hence |Π(1,n)(t)| = n for any t ≥ 0, which proves this lemma. In
consequence, one needs only to consider the case where

∫ 1/n

0
Λ(dx) 6= 0 for any

n ≥ 1. We recall g
(1)
n defined in Lemma 3.1. Let X

(1,n)
1 be the decrease of the

number of blocks at the first coalescence of Π(1,n). Thanks to Proposition 2.1
where we pick up the notations,

n−
N(Λ1,n,M/µ(n))∑

i=1

W
(n)
i ≤

∣∣∣Π(1,n)
( M

µ(n)

)∣∣∣,

where N(Λ1, n, M/µ(n)) is Poisson distributed with parameter Mg
(1)
n /µ(n) in-

dependent of (W (n)
i )i≥1 which are i.i.d. copies of X

(1,n)
1 . Then we have, for n

large,

P
(∣∣∣Π(1,n)

( M

µ(n)

)∣∣∣ ≤ n− nε
)

(3.8)

≤ P
(

n−
N(Λ1,n,M/µ(n))∑

i=1

W
(n)
i ≤ n− nε

)
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= P
( N(Λ1,n,M/µ(n))∑

i=1

W
(n)
i − g

(1)
n M

µ(n)
E

[
W

(n)
1

] ≥ nε− g
(1)
n M

µ(n)
E
[
W

(n)
1

])

≤
(
nε− g

(1)
n M

µ(n)
E

[
W

(n)
1

])−2

Var
( N(Λ1,n,M/µ(n))∑

i=1

W
(n)
i

)

=
(
nε− g

(1)
n M

µ(n)
E

[
W

(n)
1

])−2 Mg
(1)
n

µ(n)
E

[
(W (n)

1 )2
]
,

where the second inequality needs nε − (
g
(1)
n M/µ(n)

)
E

[
W

(n)
1

]
> 0 which is

justified by the following calculations: Notice that due to Proposition 2.1 and
Lemma 3.1, for n large enough,

E
[
W

(n)
1

]
+ 1 ≤ n(n− 1)

∫ 1/n

0
Λ1(dx)

g
(1)
n

≤ 1
C1

; (3.9)

E
[
(W (n)

1 )2
] ≤ n(n− 1)

∫ 1/n

0
Λ1(dx)

g
(1)
n

≤ 1
C1

,

where C1 is the positive constant in Lemma 3.1.
Notice that (1.4) gives g

(1)
n /(nµ(n)) ≤ gn/(nµ(n)) → 0. Then together

with (3.9), we have

g
(1)
n M

µ(n)
E

[
W

(n)
1

]
= o(n),

g
(1)
n M

µ(n)
E

[(
W

(n)
1

)2] = o(n).

Hence nε− (
g
(1)
n M/µ(n)

)
E

[
W

(n)
1

] ³ nε. So the inequality (3.8) is justified and
one deduces that

P
(∣∣∣Π(Λ1,n)

( M

µ(n)

)∣∣∣ ≤ n− nε
)

= o(n−1).

Then we conclude (3.7). 2

3.3. Asymptotics of P
(2,m)
t , P

(n,m)
1,2 (t), P

(n,m,k)
1,2 (t), 2 ≤ m ≤ n, t ≥ 0

These terms are probabilities defined in Section 2.3.1, which measure the
possibility to make one or several singletons coalesced in their first marking times
within [0, t). In fact, we will study P

(2,m)

t/µ(n) , P
(n,m)
1,2 (t/µ(n)), P

(n,m,k)
1,2 (t/µ(n)),

since we want to prove that the normalization factor of the external branch
length is µ(n). We denote by “¿” the stochastic dominance between two real
random variables. The following corollary together with the remark at the end
play an important role in getting the asymptotics of the three probabilities.



250 Linglong Yuan

Proposition 3.2. Suppose that Λ satisfies (1.4) and define

P (2,n) := lim
t→∞

P
(2,n)
t =

+∞∑

i=1

E
[
∆(2)

i

(
1− (

1−∆(2)
i

)n−1)]
.

Then
lim

n→+∞
P (2,n) = 1. (3.10)

Proof. Recall (η(2)
i )i≥1, (e(2)

i )i≥1, {∆(2)
i }i≥1 which are associated to Λ2 and

defined in Section 2.3. At first, we remark that
∑+∞

i=1 E
[
∆(2)

i

]
= 1. One only

needs to prove that limn→+∞
∑+∞

i=1 E
[
∆(2)

i

(
1−∆(2)

i

)n−1] = 0. It is easy to see
that

E
[
∆(2)

i

(
1−∆(2)

i

)n−1] = E
[
∆̄(2)

i

(
1− ∆̄(2)

i

)n−1]
,

where ∆̄(2)
i = η

(2)
1 Πi

j=2(1−η
(2)
j ). It is obvious that (∆̄(2)

i )i≥1 is a Markov chain.
For s > 0, we define a stopping time

τs = min
{
i | ∆̄(2)

i ≤ 1/s
}

= min
{

i

∣∣∣∣ −
i∑

j=2

ln
(
1− η

(2)
j

) ≥ ln sη
(2)
1

}

= min
{

i + 1
∣∣∣∣ −

i∑

j=1

ln
(
1− η

(2)
j+1

) ≥ ln sη
(2)
1

}
.

Then we get

+∞∑

i=1

E
[
∆(2)

i

(
1−∆(2)

i

)n−1] (3.11)

= E
[ +∞∑

i=1

∆̄(2)
i

(
1− ∆̄(2)

i

)n−1
]

= E
[ τn−1∑

i=1

∆̄(2)
i

(
1− ∆̄(2)

i

)n−1 +
+∞∑

i=τn

∆̄(2)
i

(
1− ∆̄(2)

i

)n−1
]
.

Notice that x(1 − x)n−1 ≤ 1/n, if 1/n ≤ x ≤ 1 and x(1 − x)n−1 ≤ x, if
0 ≤ x ≤ 1/n. Then (3.11) gives

+∞∑

i=1

E
[
∆(2)

i

(
1−∆(2)

i

)n−1] ≤ E
[
τn − 1

n
+

+∞∑

i=τn

∆̄(2)
i

]
≤ E

[τn − 1
n

]
+

1

E
[
nη

(2)
1

] .

(3.12)
To calculate E[τn], we use renewal theory. Let µ = E[− ln(1−η

(2)
1 )]. Depending

on whether µ is finite or not, we separate the discussion into two parts.
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Part 1: Assume that µ < +∞. We denote by F (t) the distribution function

and f(t) the density function of − ln(1 − η
(2)
1 ) and X an independent random

variable with density function µ−1(1 − F (t))1{t ≥ 0}. Notice that X depends
on n. Let ε > 0, then using integration by parts,

P(0 ≤ X ≤ ε) =

ε∫

0

1− F (t)
µ

dt =
ε(1− F (ε))

µ
+

∫ ε

0
tf(t) dt

µ
≥

∫ ε

0
tf(t) dt

µ
.

(3.13)
One can write

∫ ε

0
tf(t) dt in another way

ε∫

0

tf(t) dt =

∫ 1−exp(−ε)

1/n
− ln(1− x)x−2 Λ(dx)

∫ 1

1/n
x−2 Λ(dx)

.

Notice that µ=
( ∫ 1

1/n
x−2 Λ(dx)

)−1∫ 1

1/n
− ln(1−x)x−2 Λ(dx) < +∞, then for n

large enough, there must exist a large number ε0 > 0 such that for any ε ≥ ε0,
ε∫

0

tf(t) dt ≥ 1
2

∫ 1

1/n
− ln(1− x)x−2 Λ(dx)
∫ 1

1/n
x−2 Λ(dx)

=
µ

2
.

Now together with (3.13), one gets that for n large enough

P(0 ≤ X ≤ ε) ≥ 1/2, ∀ε ≥ ε0. (3.14)

We fix ε ≥ ε0 and define a new Markov chain
(
X −∑i

j=2 ln(1− η
(2)
j )

)
i≥1

and a

stopping time τ ′s = min
{
i | X −∑i

j=1 ln(1− η
(2)
j+1) ≥ ln s

}
for s > 0. It is clear

from the definitions of τs and τ ′s that

E
[
τ ′
sη

(2)
1
| X = ε

]
= E

[
τs exp(−ε) − 1

]
.

Then

E
[
τ ′
nη

(2)
1

]
= E

[
τ ′
nη

(2)
1

1{0 ≤ X ≤ ε}] + E
[
τ ′
nη

(2)
1

1{X > ε}]

≥ P(0 ≤ X ≤ ε)E
[
τn exp(−ε) − 1

]
+ E

[
τ ′
nη

(2)
1

1{X > ε}],

which implies that

E
[
τn exp(−ε)

] ≤
E

[
τ ′
nη

(2)
1

]

P(0 ≤ X ≤ ε)
+ 1. (3.15)

Due to (4.4) and (4.6) in [16, p. 369], we have

E
[
τ ′s

]
=

ln s

µ
, ∀s ≥ 1.
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Notice that η
(2)
1 ≥ 1/n, hence nη

(2)
1 ≥ 1. Therefore, (3.15) gives

E
[
τn

] ≤
E

[
τ ′
n exp(ε) η

(2)
1

]

P(0 ≤ X ≤ ε)
+ 1 =

E
[
ln(n exp(ε) η(2))

]

µP(0 ≤ X ≤ ε)
+ 1. (3.16)

For any 0 ≤ x < 1, we have − ln(1 − x) ≥ x, hence µ ≥ E[
η
(2)
1

]
. Then (3.16)

implies
E

[
τn

]

n
≤ E

[
ln nη

(2)
1

]
+ ε

E
[
nη

(2)
1

]
P(0 ≤ X ≤ ε)

+
1
n

. (3.17)

Using (3.14) and (3.12), it suffices to prove that:

lim
n→+∞

E
[
nη

(2)
1

]
= +∞, and lim

n→+∞
E

[
ln(nη

(2)
1 )

]

E
[
nη

(2)
1

] = 0.

It is easy to see that, using (1.3), there exists a positive constant C2 such that

E
[
nη

(2)
1

]
=

n
∫ 1

1/n
x−1 Λ(dx)

µ̄(n)
≥ C2

nµ(n)

gn
,

for any n ≥ 3. Hence E
[
nη

(2)
1

]
tends to +∞ since Λ satisfies (1.4). For the

second convergence, we fix M > e. Then,

E
[
ln(nη

(2)
1 )

]

E
[
nη

(2)
1

] =
E

[
ln(nη

(2)
1 )1{nη

(2)
1 ≥ M}] + E

[
ln(nη

(2)
1 )1{nη

(2)
1 < M}]

E
[
nη

(2)
1

]

≤ E
[
ln(nη

(2)
1 )1{nη

(2)
1 ≥ M}]

E
[
nη

(2)
1

] +
ln M

E
[
nη

(2)
1

]

≤ E
[
ln(nη

(2)
1 )1{nη

(2)
1 ≥ M}]

E
[
nη

(2)
1 1{nη

(2)
1 ≥ M}]

+
ln M

E
[
nη

(2)
1

]

≤ ln M

M
+

ln M

E
[
nη

(2)
1

] .

The last inequality is due to the fact that for any x ≥ M > e, we have ln x/x ≤
ln M/M . Since M can be chosen as large as we want, limn→+∞

(
E

[
nη

(2)
1

])−1×
E

[
ln(nη

(2)
1 )

]
= 0. Hence we can conclude.

Part 2: If µ = +∞. We define

(η̄(2)
i )i≥2 :=

(1
2
1
{

η
(2)
i ≥ 1

2

}
+ η

(2)
i 1

{
η
(2)
i <

1
2

})
i≥2
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and for s > 0, τ̄s := min
{
i + 1 | ∑i

j=1− ln(1 − η̄
(2)
j+1) ≥ ln sη

(2)
1

}
. Notice that

E
[ − ln(1 − η̄

(2)
i )

]
< +∞, then we return to the first case and get (3.17) by

replacing τn by τ̄n and keeping the same η
(2)
1 but with different X (depending

on η̄
(2)
i , i ≥ 2). In this setting, P(0 ≤ X ≤ ln 2) = 1. We see that the closer η̄

(2)
i

is to 1, the larger the − ln(1− η̄
(2)
i ) and hence τn ¿ τ̄n. Then we can conclude.

2

Remark 3.1. For 0 < ε < 1, we also have

lim
n→+∞

+∞∑

i=1

E
[
∆(2)

i (1−∆(2)
i )n(1−ε)

]
= 0. (3.18)

The proof is all the same. The only thing different is that in place of (3.12), we
have

∑+∞
i=1 E

[
∆(2)

i (1−∆(2)
i )n(1−ε)

] ≤ CE
[
(τn−1)/n+

∑+∞
i=τn

bar∆(2)
i

]
, with C

larger than 1 and depends on ε.

Now we can start to study at first P
(2,n)

t/µ(n) .

Corollary 3.2.
lim

t→+∞
lim inf
n→+∞

P
(2,n)

t/µ(n) = 1. (3.19)

Proof. Recall that {e(2)
i }i≥n are i.i.d. exponential variables with parameter

µ̄(n) =
∫ 1

0
x−2 Λ2(dx), as defined in Section 2.3. Let τn(t)=max

{
j :

∑j
i=1 e

(2)
i ≤

t/µ(n)
}
. Then

P
(2,n)

t/µ(n) = E
[ τn(t)∑

i=1

∆(2)
i −

τn(t)∑

i=1

∆(2)
i

(
1−∆(2)

i

)n−1
]
. (3.20)

Due to Proposition 3.2, we have

lim
n→+∞

E
[ τn(t)∑

i=1

∆(2)
i

(
1−∆(2)

i

)n−1
]
≤ lim

n→+∞
E

[ +∞∑

i=1

∆(2)
i

(
1−∆(2)

i

)n−1
]

= 0.

Then it suffices to prove that

lim
t→+∞

lim inf
n→+∞

E
[ τn(t)∑

i=1

∆(2)
i

]
= 1. (3.21)

Let Ej = µ̄(n)
∑j

i=1 e
(2)
i , which is the sum of j i.i.d. unit exponential variables.

Let In = µ̄(n)/µ(n). Then

τn(t) = max{j : Ej ≤ tIn}.
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For any fixed 0 < β < 1,

P
(
τn(t) ∈ [0, βtIn) ∪ (tIn/β, +∞)

)

= P
(EdβtIne ≥ tIn

)
+ P

(EbtIn/βc ≤ tIn

)
= o((tIn)−1), (3.22)

where the last equality is a large deviation result (for example, see Theorem 1.4
of [10]). Notice that τn(t) is independent of {∆(2)

i }i≥1, so

E
[ τn(t)∑

i=1

∆(2)
i

]
= E

[
1−

(
1− 1

In

)τn(t)+1]

= E
[
1−

(
1− 1

In

)τn(t)+1

1
{

tInβ ≤ τn(t) ≤ t
In

β

}]
+ o((tIn)−1)

≥ E
[
1−

(
1− 1

In

)tInβ

1
{

tInβ ≤ τn(t) ≤ t
In

β

}]
+ o((tIn)−1).

Notice that In ≥ 1 and the term at the right of the above inequality satisfies

lim
t→+∞

lim inf
n→+∞

E
[
1−

(
1− 1

In

)tInβ

1
{

tInβ ≤ τn(t) ≤ t
In

β

}]
+ o((tIn)−1) = 1.

Then we can conclude (3.21). 2

Remark 3.2. For 0 < ε < 1, we also have

lim
t→+∞

lim inf
n→+∞

P
(2,dn−nεe)
t/µ(n) = 1. (3.23)

To prove this, in the proof of this corollary, one should replace (3.20) by

P
(2,n)

t/µ(n) = E
[ τn(t)∑

i=1

∆(2)
i −

τn(t)∑

i=1

∆(2)
i (1−∆(2)

i )dn−nεe−1

]
.

The first term satisfies (3.21). For the second term, using (3.18), we get

lim
n→+∞

E
[ τn(t)∑

i=1

∆(2)
i

(
1−∆(2)

i

)dn−nεe−1
]

= 0.

Then (3.23) is proved.

The next corollary is straightforward using (2.1), (2.2) and (3.23).

Corollary 3.3. For any 0 < ε < 1,

lim
t→+∞

lim inf
n→+∞

P
(n,dn−nεe,k)
1,2

( t

µ(n)

)
= 1, lim

t→+∞
lim inf
n→+∞

P
(n,dn−nεe)
1,2

( t

µ(n)

)
= 1.
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3.4. Proofs of main results

Proof of Theorem 1.1. Fix t > 0 and 0 < ε < 1. Considering the measure
division construction for two-type Λ-coalescents, let Π be the path of Π(1,n)

chosen at the step 0 and define the event

E′ :=
{∣∣∣Π

( t

µ(n)

)∣∣∣ ≥ n− nε
} ⋂ {

{1} ∈ Π
( t

µ(n)

)}
.

Recall that
{∣∣Π(1,n)(t/µ(n))

∣∣ ≥ n − nε
}

implies that there are at least n −
d2nεe singletons at time t/µ(n). For n large enough, using the exchange-
ability property, we have P(E′) ≥ (n− d2nεe)n−1(1 − κn(t)), where κn(t) =
P
(∣∣Π(1,n)(t/µ(n))

∣∣ < n − nε
)

and κn(t) = o(n−1) due to (3.7) . For ε small
enough and n large enough, we have P(E′) as close as we want to 1. We define
another event

E′′ :=
{{1} is coalesced at its first marking time within [0, t).

}

Then due to (2.1) and P
(2,m)
t is increasing on m, we get

P
(
E′′ | E′) ≥ P

(2,dn−nεe)
t/µ(n) . (3.24)

Let 0 < t1 < t,

P
(
T

(n)
1 ≥ t1

µ(n)

)
= P

(
T

(n)
1 ≥ t1

µ(n)
, E′ ∩ E′′

)
+ P

(
T

(n)
1 ≥ t1

µ(n)
, (E′ ∩ E′′)c

)

= P
(
L

(2,n)
1 ≥ t1

µ(n)
, E′ ∩ E′′

)
+ P

(
T

(n)
1 ≥ t1

µ(n)
, (E′ ∩ E′′)c

)
.

(3.25)

Corollary 2.2 tells that P
(
L

(2,n)
1 ≥ t1/µ(n) | E′) = exp(−t1) and it has been

proved that P(E′∩E′′) = P(E′)P(E′′ | E′) can be made as close as possible to 1
by taking ε small enough and t large enough and n tending to +∞. Hence the
first term of (3.25) can be made as close as we want to exp(−t1) and the second
term is close to 0. Then we can conclude. 2

Proof of Theorem 1.2. We prove instead for k ∈ N:

µ(n)
(
T

(n)
1 , T

(n)
2 , . . . , T

(n)
k

) (d)−→ (e1, e2, . . . , ek), (3.26)

which is equivalent to (1.6) (see [3, p. 19]). We will give the proof for k = 2 and
leave the easy extension to readers. The proof is similar to that of Theorem 1.1.
Let Π be the path of Π(1,n) chosen at step 0. Let t > 0, 0 < ε < 1 and define
the event

F ′ :=
{∣∣∣Π

( t

µ(n)

)∣∣∣ ≥ n− nε
} ⋂{

{1}, {2} ∈ Π
( t

µ(n)

)}
.
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Using the same arguments, we get

P(F ′) ≥
(
n−d2nεe

2

)
(
n
2

) (1− κn(t)).

We then define the event

F ′′ :=
{{1}, {2} are both coalesced at their first marking times within [0, t).

}

Then due to (2.2) and P
(2,m)
t is increasing on m, we get P (F ′′ | F ′) ≥ 1−2

(
1−

P
(2,dn−nεe)
t/µ(n)

)
, which is as close as possible to 1 for t large and n tending to +∞.

Let 0 ≤ t1, t2 ≤ t. Then

P
(
T

(n)
1 ≥ t1

µ(n)
, T

(n)
2 ≥ t2

µ(n)

)
= P

(
T

(n)
1 ≥ t1

µ(n)
, T

(n)
2 ≥ t2

µ(n)
, F ′ ∩ F ′′

)

+ P
(
T

(n)
1 ≥ t1

µ(n)
, T

(n)
2 ≥ t2

µ(n)
, (F ′ ∩ F ′′)c

)

= P
(
L

(2,n)
1 ≥ t1

µ(n)
, L

(2,n)
2 ≥ t2

µ(n)
, F ′ ∩ F ′′

)

+ P
(
T

(n)
1 ≥ t1

µ(n)
, T

(n)
2 ≥ t2

µ(n)
, (F ′ ∩ F ′′)c

)
.

(3.27)

As shown that P((F ′ ∩ F ′′)) can be made as close as possible to 1 by taking t
large enough and ε small enough, tending n to +∞. Then the second term
in (3.27) is close to 0. Using Corollary 2.2, the first term is as close as possible
to exp(−t1−t2) by tending n to +∞ with t large enough. Then we can conclude.

2

Proof of Corollary 1.1. We prove at first the case of one external branch length.
We seek to prove the uniform integrability of {(µ(n)T

(n)
1 )k, n ≥ 2} for any k ≥ 0.

One needs only to show that for any fixed k ∈ N, sup
{
E

[
(µ(n)T

(n)
1 )k

] | n ≥
2
}

< +∞ (see Lemma 4.11 of [22] and Problem 14 in Section 8.3 of [7]). Let
M > 0, 0 < ε < 1, βn =

∣∣Π(n)(M/µ(n))
∣∣ and n0 = min{i | µ(i) > 0}. To avoid

invalid calculations, we set µ(n) = 1 if n < n0. Using the Markov property, we
have

T
(n)
1 ¿ M

µ(n)
+ T̄

(βn)
1 1

{
T

(n)
1 ≥ M

µ(n)

}
,

where T̄
(n)
1

(d)
= T

(n)
1 , n ≥ 2 and conditional on βn, T̄

(βn)
1 is independent of

1
{
T

(n)
1 ≥ M/µ(n)

}
. Then for nε ≥ n0,

E
[
(µ(n)T

(n)
1 )k

]
(3.28)

≤ E[
(M + µ(n)T̄

(βn)
1 1{µ(n)T

(n)
1 > M})k

]
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≤ (2M)k + E
[
(2µ(n)T̄

(βn)
1 1{µ(n)T

(n)
1 > M})k

]

≤ (2M)k +
(
E

[
2µ(n)T̄

(n)
1 1{βn = n}])k

+ E
[(

2µ(n)T̄
(βn)
1 1{µ(n)T

(n)
1 > M, nε ≤ βn ≤ n− 1})k]

+ E
[(

2µ(n)T̄
(βn)
1 1{µ(n)T

(n)
1 > M, βn < nε})k]

≤ (2M)k + exp
(
− Mgn

µ(n)

)
E

[
(2µ(n)T̄

(n)
1 )k

]

+ P
(
µ(n)T

(n)
1 > M

)(
2

µ(n)

µ(nε)

)k

max
{
E

[
(µ(j)T̄

(j)
1 )k

] | j ∈ [nε, n− 1]
}

+ P(βn < nε)E
[βn

n

(
2

µ(n)

µ(βn)

)k(
µ(βn)T̄

(βn)
1

)k
∣∣∣ βn < nε

]
,

where exp(−Mgn/µ(n)) in the second term at right of the last inequality is the
probability for no coalescence within [0,M/µ(n)]. The third term is due to the
fact that µ(n) is an increasing function of n when n ≥ n0. The fourth term is due
to exchangeability which says that the probability for {1} not to have coalesced
at M/µ(n) when there exist only βn blocks is less than βn/n. One needs the
following three estimates to prove the boundedness of

(
E

[
(µ(n)T

(n)
1 )k

])
n≥2

.

• Estimation of exp(−Mgn/µ(n)) 2k: Notice that for n ≥ n0,

gn

µ(n)
=

∫ 1

0
(1− (1− x)n − nx(1− x)n−1)x−2 Λ(dx)∫ 1

1/n
x−1 Λ(dx)

≥
∫ 1

1/n
(1− (1− x)n − nx(1− x)n−1)x−2 Λ(dx)

∫ 1

1/n
x−1 Λ(dx)

≥ e− 2
e

.

And if 2 ≤ n < n0, we have exp(−Mgn/µ(n)) = exp(−Mgn) M→+∞−→ 0.
Hence if M is large enough, we have, for any n ≥ 2,

exp
(
− Mgn

µ(n)

)
2k ≤ 1

4
. (3.29)

• Estimation of P(µ(n)T
(n)
1 > M)(2µ(n)/µ(nε))k: Due to Corollary 3.1, we

get limn→+∞ µ(n)/µ(nε) = 1, and Theorem 1.1 gives limn→+∞ P
(
µ(n) ×

T
(n)
1 > M

)
= exp(−M). Hence by taking M large enough, we have for

any n ≥ 2,

P
(
µ(n)T

(n)
1 > M

)(
2

µ(n)

µ(nε)

)k

≤ 1
4
. (3.30)
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• Estimation of βnn−1(2µ(n)/µ(βn))k, βn < nε: Using the notations in
Proposition 3.1, for βn ≥ n0, we have

µ(n)

µ(βn)
= exp

( 1/βn∫

1/n

f(x)
x

dx

)
1− f(1/n)
1− f(1/βn)

. (3.31)

Let n1 > n0 such that for any n ≥ n1, we have f(1/n) ≤ 1/2k. Hence
for any a, b ≥ n1, (1− f(a))/(1− f(b)) ≤ 2. This n1 can be found since
f(1/n) tends to 0 as n tends to +∞. Thus (3.31) implies, for βn ≥ n1,

µ(n)

µ(βn)
≤ 2

( n

βn

)1/2k

.

Hence if n1 ≤ βn < nε and ε ≤ 4−2k−2,

βn

n

(
2

µ(n)

µ(βn)

)k

≤ 4k
(βn

n

)1/2

< 4k(ε)1/2 ≤ 1
4
.

If βn < n1, due to Corollary 3.1, one could find a large number n2 such
that n2 > n1 and for any n ≥ n2

βn

n

(
2

µ(n)

µ(βn)

)k

≤ 1
4
.

In total, if n ≥ n2 and βn < nε, then

βn

n

(
2

µ(n)

µ(βn)

)k

≤ 1
4
. (3.32)

Using (3.28)–(3.30) and (3.32), we get

E
[(

µ(n)T
(n)
1

)k] ≤ 4
3
(2M)k +

1
3

max
{
E

[(
µ(j)T̄

(j)
1

)k] | j ∈ [nε, n− 1]
}

+
1
3
E

[(
µ(βn)T̄

(βn)
1

)k | βn < nε
]

≤ 4
3
(2M)k +

2
3

max
{
E

[(
µ(j)T̄

(j)
1

)k] | j ≤ n− 1
}
. (3.33)

The above inequality is valid for a large M , ε = 4−2k−2 and n ≥ n2. Let
C3 ≥ max

{
E

[
(µ(j)T

(j)
1 )k

]
, 4(2M)k | 2 ≤ j < n2

}
, then for any n ≥ 2, C3 ≥

E
[
(µ(n)T

(n)
1 )k

]
using (3.33). Then we can conclude.

The case of multiple external branch lengths is merely a consequence of the
case of one external branch length, the Cauchy – Schwarz inequality and also a
uniform integrability argument. 2
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Proof of Corollary 1.2. Notice that {T (n)
i }1≤i≤n are exchangeable. Hence Co-

rollary 1.1 shows that

lim
n→+∞

E
[
µ(n)L

(n)
ext/n

]
= lim

n→+∞
E

[
µ(n) T

(n)
1 + T

(n)
2 + · · ·+ T

(n)
n

n

]

= lim
n→+∞

E
[
µ(n)T

(n)
1

]
= 1,

and

lim
n→+∞

Var
(µ(n)L

(n)
ext

n

)

= lim
n→+∞

E[n(µ(n)T
(n)
i )2] + n(n− 1)E[(µ(n))2T (n)

1 T
(n)
2 ]− n2(E[µ(n)T

(n)
1 ])2

n2

= lim
n→+∞

Var(µ(n)T
(n)
1 ) + (n− 1)Cov(µ(n)T

(n)
1 , µ(n)T

(n)
2 )

n
= 0.

Hence µ(n)L
(n)
ext/n converges in L2 to 1. 2

Before proving Corollary 1.3, we study at first a problem of sensibility of a
recurrence satisfied by

(
E[T (n)

1 ]
)
n≥2

. More precisely, if an = E[T (n)
1 ], then an

satisfies a recurrence (see [11]): a1 = 0, and for n ≥ 2, we have

an = cn +
n−1∑

k=1

pn,k
k − 1

n
ak, (3.34)

where (cn)n≥2 = (1/gn)n≥2 and pn,k is defined in (1.2). Due to Corollary 1.1,
we have limn→+∞ µ(n)an = 1. The question is as follows: what is the limit
behavior of an if we set initially the values of (ai)1≤i≤n0 with n0 ≥ 1 without
using (3.34) and replace cn by c′n = 1/gn + o(1/gn)? It is answered in the next
lemma.

Lemma 3.3. Let n0 ≥ 1 and (a′i)1≤i≤n0 be n0 real numbers. For n > n0, let

a′n = c′n +
n−1∑

k=1

pn,k
k − 1

n
a′k, (3.35)

where (c′n)n>n0 is a sequence which satisfies c′n = 1/gn + o(1/gn). Then

lim
n→+∞

µ(n)a′n = 1.

Proof. We fix ε > 0 and let nε > n0 such that c′n ≤ (1 + ε)/gn for n > nε. We
set M = max{|a′i|, ai | 1 ≤ i ≤ nε}.



260 Linglong Yuan

Let us at first look at (3.34) which has the following interpretation using
random walk: A walker stands initially at point n, then after time cn, he jumps
to point k1 with probability pn,k1 , then after time [(k1 − 1)/n]ck1 , he jumps
to k2 with probability pk1,k2 , and then after time [(k1 − 1)(k2 − 1)/nk1]ck2 , he
jumps to the next point, etc. If he falls at point 1, then this walk is finished. It
is easy to see that an is the expectation of the total walking time. One notices
that there is a scaling effect on the walking time. More precisely, let l ≥ 1 and
n = k0 > k1 > · · · > kl ≥ 1 such that the walker jumps from ki to ki+1 for
0 ≤ i ≤ l − 1. Then conditional on this walking history, the remaining walking
time is

(
Πl−1

i=0(ki+1 − 1)/ki

)
akl

.
The recurrence (3.35) has the same interpretation. The difference is that one

should stop the walker when he arrives at a point i within [1, n0] and one adds
a scaled value of a′i to the walking time (notice that a′i can be negative). To
estimate a′n, we use a Markov chain (Wi)i≥0 to couple the jumping structures
of (3.34) and (3.35): W0 = n,

• If Wi = k with k ≥ nε, then Wi+1 = k′ with probability pk,k′ , where
1 ≤ k′ ≤ k − 1;

• If Wi < nε, then we set Wj = Wi for any j ≥ i + 1.

Notice that the jumping dynamics of both recurrences is characterized by
(Wi)i≥0 until arriving at a point within [1, nε]. And we also see that (Wi)i≥0

is the discrete time Markov chain related to the block counting process |Π(n)|
stopped at the first time arriving within [1, nε].

Let ςn = min{i | Wi = Wi+1}, Cςn =
∏ςn−1

i=0 (Wi+1 − 1)/Wi and Tςn is
set to be the time to ςn of the random walk related to (3.34) and T ′ςn

be the
corresponding time related to (3.35).

By the scaling effect of Cςn on the walking time, we get

an = E
[
Tςn + CςnaWςn

]
, a′n = E

[
T ′ςn

+ Cςna′Wςn

]
.

Due to the definitions of M, nε, we obtain

an −ME
[
Cςn

] ≤ E[
Tςn

] ≤ an;

a′n −ME
[
Cςn

] ≤ E[
T ′ςn

] ≤ a′n + ME
[
Cςn

]
;

E
[
T ′ςn

] ≤ (1 + ε)E[Tςn ].

Notice that E[Cςn ] ≤ nε/n and due to Corollary 3.1, we have limn→+∞M ×
µ(n)/n = 0. Hence limn→+∞ME[Cςn ]µ(n) = 0. Then we can conclude that for n
large, a′n ≤ (1 + 2ε)an. In the same way, we can prove also a′n ≥ (1− 2ε′)an for
another small positive number ε′ with n large enough. Then we can deduce the
lemma. 2
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Proof of Corollary 1.3. Let bn = E
[
µ(n)L

(n)
total/n

]
. Then looking at the first

coalescence of the process Π(n), we have,

b1 = 0; bn =
µ(n)

gn
+

n−1∑

k=1

pn,k
kµ(n)

nµ(k)
bk, n ≥ 2. (3.36)

If for some k, µ(k) = 0, then we set µ(k) = 1 to avoid invalid calculations. To
use Lemma 3.3, we write (3.36) as:

b1 = 0; bn =
µ(n)

gn
+

n−1∑

k=1

pn,k
µ(n)

nµ(k)
bk +

n−1∑

k=1

pn,k
(k − 1)µ(n)

nµ(k)
bk, n ≥ 2. (3.37)

We at first prove that
∑n−1

k=1 pn,k µ(n)/(nµ(k))=o(µ(n)/gn). Indeed, due to (2.5),
let a =

∫ 1

0
(1− (1− x)n−1)x−1 Λ(dx) and M > 0, then

P
(
X

(n)
1 ≥ Ma

) ≤ E[X(n)
1 ]

Ma
≤ n

Mgn
. (3.38)

Using Corollary 3.1, we have

lim sup
n→+∞

a

n
≤ lim

n→+∞

∫ 1/n

0
(n− 1)Λ(dx) + µ(n)

n
= 0,

limn→+∞ µ(n)/µ(n−Ma) = 1. Then for n large enough,

n−1∑

k=1

pn,k
µ(n)

nµ(k)
=
bn−Mac∑

k=1

pn,k
µ(n)

nµ(k)
+

n−1∑

k=bn−Mac+1

pn,k
µ(n)

nµ(k)

≤ P(
X

(n)
1 ≥ Ma

)
E

[ µ(n)

nµ(n−X
(n)
1 )

∣∣∣X(n)
1 ≥ Ma

]
+

µ(n)

µ(n−Ma)n

≤ µ(n)

Mgn
max

{ 1
µ(k)

∣∣∣ 1 ≤ k ≤ n
}

+
µ(n)

µ(n−Ma)n
,

where the first term at the right of the the last inequality is due to (3.38) and
can be made as small as we want w.r.t. µ(n)/gn when M is large enough. Notice
that n−1 = o(µ(n)/gn) due to (1.4). Then the second term µ(n)/(µ(n−Ma)n) =
o(µ(n)/gn) using also limn→+∞ µ(n)/µ(n−Ma) = 1. Then

∑n−1
k=1 pn,kµ(n) ×

(nµ(k))−1 = o(µ(n)/gn).
We now only need to prove that (bk)k≥2 are bounded, since in this case,∑n−1

k=1 pn,k [µ(n)/(nµ(k))] bk = o(µ(n)/gn) and we apply Lemma 3.3 to (3.37).
We construct another recurrence:

b′1 = 0; b′n =
Cµ(n)

gn
+

n−1∑

k=1

pn,k
(k − 1)µ(n)

nµ(k)
b′k, n ≥ 2. (3.39)
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where C is a positive number. If C = 1, this is exactly a transformation of the
recurrence (3.34). Let M ′(C) = sup{b′n | n ≥ 1}. Then it is easy to see that
M ′(C) = CM ′(1). Let n0 ≥ 1, such that for n ≥ n0, we have

n−1∑

k=1

pn,k
µ(n)

nµ(k)
M ′(1) ≤ 1

2
µ(n)

gn
.

Then for C ≥ 2, n ≥ n0,

µ(n)

gn
+

n−1∑

k=1

pn,k
µ(n)

nµ(k)
M ′(C) ≤ Cµ(n)

gn
. (3.40)

For 2 ≤ n < n0, we set C large enough such that

µ(n)

gn
+

n−1∑

k=1

pn,k
µ(n)

nµ(k)
max{bi | 1 ≤ i < n0} ≤ Cµ(n)

gn
. (3.41)

Comparing the coefficients and initial values of recurrences (3.37) and (3.39)
using (3.40) and (3.41), we deduce that bn ≤ b′n ≤ M ′(C). Hence we can
conclude. 2
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